Qubit per un processore superconduttore a stato solido programmabile

Bit quantistici QuBits Fisica delle particelle atomiche

I ricercatori hanno dimostrato che un gran numero di bit quantistici, o qubit, possono essere sintonizzati per interagire tra loro mantenendo la coerenza per un tempo senza precedenti, in un processore superconduttore a stato solido programmabile.

Stati quantistici coerenti di lunga durata in un dispositivo superconduttore per la tecnologia dell’informazione quantistica

Gli scienziati sono stati in grado di dimostrare per la prima volta che un gran numero di bit quantistici, o qubit, possono essere sintonizzati per interagire tra loro mantenendo la coerenza per un tempo senza precedenti, in un processore superconduttore a stato solido programmabile. Questa svolta è stata fatta da ricercatori dell’Arizona State University e dell’Università di Zhejiang in Cina, insieme a due teorici del Regno Unito.

In precedenza, questo era possibile solo a Rydberg[{” attribute=””>atom systems.

A qubit, or quantum bit, is a basic unit of quantum information. It is essentially the quantum version of conventional computers’ most basic form of information, the bit.

In a new paper, scientists demonstrated a “first look” at the emergence of quantum many-body scarring (QMBS) states as a robust mechanism for maintaining coherence among interacting qubits. Such exotic quantum states offer the appealing possibility of realizing extensive multipartite entanglement for a variety of applications in quantum information science and technology to achieve high processing speed and low power consumption. The paper, which will be published today (October 13) in the journal

Classical, or binary computing relies on transistors – which can represent only the “1” or the “0” at a single time. In

“From basic physics, we know that in a system of many interacting particles, for example, molecules in a closed volume, the process of thermalization will arise. The scrambling among many qubits will invariably result in quantum thermalization – the process described by the so-called Eigenstate Thermalization Hypothesis, which will destroy the coherence among the qubits,” said Lai.

These findings will help move quantum computing forward and will have applications in cryptology, secure communications, and cybersecurity, among other technologies, says Lai.

Reference: “Many-body Hilbert space scarring on a superconducting processor” 13 October 2022, Nature Physics.
DOI: 10.1038/s41567-022-01784-9

Collaborators from the School of Physics and Astronomy, University of Leeds, Leeds, UK, include Jean-Yves Desaules and Zlatko Papic.

Dr. Hekang Li fabricated the device at Zhejiang University. Other collaborators from Zhejiang University, Hangzhou, China, include Pengfei Zhang, Hang Dong, Jiachen Chen, Jinfeng Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu, and Chao Song.

Additional contributors include Liangtian Zhao and Jie Hao from the Institute of Automation, Chinese Academy of Sciences, Beijing, China and Fangli Liu from QuEra Computing, Boston, MA.

Leave a Comment

Your email address will not be published. Required fields are marked *